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Abstract 

 

In this paper, a modified conjugate gradient method is presented for 

solving large-scale unconstrained optimization problems, which possesses the 

sufficient descent property with Strong Wolfe-Powell line search. A global 

convergence result was proved when the (SWP) line search was used under some 

conditions. Computational results for a set consisting of 138 unconstrained 

optimization test problems showed that this new conjugate gradient algorithm 

seems to converge more stable and is superior to other similar methods in many 

situations. 

 

Keywords: conjugate gradient coefficient, inexact line search, strong Wolfe–

Powell line search, global convergence, large scale, unconstrained optimization 

 

1. Introduction 
 

      Nonlinear conjugate gradient methods are well suited for large-scale problems 

due to the simplicity of their iteration and their very low memory requirements, 
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that is, they are designed to solve the following unconstrained optimization 

problem: 
nRxxf ,)(min             (1) 

where RRf n : is a smooth, nonlinear function, and its gradient is denoted by 

).()( xfxg  The iterative formula of the conjugate gradient methods is given by 

,...2,1,0,1  kdxx kkkk            (2) 

where kx is the current iterate point and k is the step length, which is computed 

by carrying out a line search, and kd  is the search direction defined by 










 ,1if

,0if

1 kdg

kg
d

kkk

k

k


          (3)   

where k  is a scalar, and )( kk xgg  . 

Various conjugate gradient methods have been proposed, and they mainly differ 

in the choice of the parameter k . Some well-known formulas for k  are given 

below: 

11

1

)(

)(










k
T

kk

kk
T
kHS

k
dgg

ggg
 , 

11 


k

T
k

k
T
kFR

k
gg

gg
 , 

11

1)(






k
T
k

kk
T
kPRP

k
gg

ggg
 , 

11 



k
T
k

k
T
kCD

k
gd

gg
 , 

11

1)(






k
T
k

kk
T
kLS

k
gd

ggg
 ,            

11)( 


k
T

kk

k
T
kDY

k
dgg

gg
    

 

where . denotes the 2l  -norm. The corresponding method is respectively called, 

HS  (Hestenes-Stiefel [1]), FR  (Fletcher_Revees [2]), PRP  (Polak_Ribiére_Polyak 

[3, 4]), CD  (Conjugate Descent [5]), LS  (Liu-Storey [6]), and DY  (Dai_Yuan [7]) 

conjugate gradient method. The convergence behavior of the above formulas with 

some line search conditions has been studied by many authors for many years [5-

17]. 

 

In the already-existing convergence analysis and implementations of the 

conjugate gradient method, the weak Wolfe–Powell (WWP) line search 

conditions are as follows: 

k
T
kkkkkk dgxfdxf   )()(           (4) 
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where 10    and kd is a descent direction.  
The strong Wolfe–Powell conditions consist of (4) and, 

k
T
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          (6) 

Furthermore, the sufficient descent property, namely, 
2

kk
T
k gcdg 

            (7) 

Where c is, a positive constant, is crucial to ensure the global convergence of the 

nonlinear conjugate gradient method with the inexact line search techniques [12, 

13]. 
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 2. New formula for k  and its properties 

 

During the last decade, much effort has been devoted to developing new 

modifications of conjugate gradient methods which do not only possess strong 

convergence properties, but they are also computationally superior to the classical 

methods. Such methods can be found in [18-30]. 

 

Recently, Wei et al. [31] gave a variant of the PRP method which is called the 

WYL method. Zhang studied and improved based on WYL a new conjugate 

gradient method, NPRP, and he proved that the NPRP method satisfied descent 

condition under strong Wolfe line search. Moreover, Zhang et al. proposed 

another modified method known as the MPRP method, where Dai and Wen [32] 

proposed a modified NPRP method known as the DPRP method. In this paper, 

enlightened by the above ideas, a modified PRP conjugate gradient method was 

proposed as follows: 
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where, HRM denotes Hamoda, Rivaie, and Mamat. According to the results 

obtained by [30], the value of the parameter u  can be set to 10  u , but in this 

paper, we will test our new method with an arbitrary value 4.0u  

 

Therefore, we first provide the following algorithm: 

 

Algorithm (2.1) 

Step 1: Given .0,0  nRx Set 00 gd   if  0g  then stop. 

Step 2: Compute k  by (SWP) line search. 

Step 3: Let )(, 111   kkkkkk xggdxx   if 1kg  then stop. 

Step 4: Compute k  by formula (8) and generate 1kd  by (3). 

Step 5: Set 1 kk  go to Step 2. 

 

The following assumptions are often used in previous studies of the 

conjugate gradient methods: 

Assumption A 

)(xf is bounded from below on the level set )}()(,{ 0xfxfRx n   , where 0x  is 

the starting point. 

Assumption B 

In some neighborhood N  of    , the objective function is continuously 

differentiable, and its gradient is Lipschitz continuous, that is, there exists a 

constant   0L  such that 

 

                                       NyxyxLygxg  ,)()( .         (9) 
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In 1992, Gilbert and Nocedal introduced the property (*) which plays an 

important role in the studies of CG methods. This property means that the next 

research direction approaches the steepest direction automatically when a small 

step-size is generated, and the step-sizes are not produced successively [33]. 

 

Property (*) 

Consider a CG method of the form (2) and (3). Suppose that, for all 0k ,  
  kg0            (10) 

 

where   and  are two positive constants. We say that the method has property 

(*), if there exist constants 1b , 0  such that for all k ,   kk Sb, implies 

,
2

1

b
k  where kkk dS  . 

The following lemma shows that the new method HRM
k  has the property (*). 

 

Lemma 2.1 

Consider the method of form (2) and (3), Suppose that Assumptions A and B 

hold, then, the method HRM
k has property (*). 
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From Assumption B, (9) holds. If kS then, 
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The proof is finished. 

 

3. The global convergence properties 
 

The following theorem shows that the formula HRM with SWP line search possess 

the sufficient descent condition 

 

Theorem 3.1 

Suppose that the sequences }{ kg and }{ kd  are generated by the method of form (2), 

(3) and (8), and the step length k  is determined by the (SWP) line search (4) and  
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(6), if 0kg , then the sequence }{ kd possesses the sufficient descent condition 

(7). 

 

Proof 

 By the formulae (8), we have the following: 
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Hence, we obtain 

     
2

1

2
5

0





k

kHRM
k

g

g
          (11) 

Using (6) and (11), we get 
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We prove the descent property of }{ kd by induction. Since ,0
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(13) and (15) deduce, 
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This implies that (7) holds. The proof is complete. 

 

The following condition known as Zoutendijk condition was used to prove 

the global convergence of nonlinear CG methods [15, 34]. 

 

Lemma 3.1 

Suppose that Assumptions A and B hold. Consider a CG method of the form (2) 

and (3), where kd satisfies 0k
T
k dg , for all k , and k is obtained by (SWP) line 

search (4) and (6), Then, 
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The proof had been given in [35, 36]. In [10], Gilbert and Nocedal introduced the 

following important theorem: 

 

Theorem 3.2 

Consider any CG method of form (2) and (3), that satisfies the following 

conditions: 

(1) 0k  

(2) The search directions satisfy the sufficient descent condition. 

(3) The Zoutendijk condition holds. 

(4) Property(*) holds. 
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      If the Lipschitz and boundedness Assumptions hold, then the iterates are 

globally convergent. 

 

From (7), (9), (17) and Lemma 2.1, we found that the HRM method with 

the parameter 10/10   satisfies all four conditions in theorem 3.2 under the 

strong Wolfe-Powell line search, so the method is globally convergent. 

 

4. Numerical Experiments 
 

In the present numerical experiments, we selected thirty-two different functions 

which had been earlier considered in [37-39] for both small-scale and large-scale 

optimization problems. Each of these functions was tested with different variables 

which lie in the range from 2 to 10,000. We tested a set of 138 problems with 

strong Wolfe-Powell line search. The algorithm was implemented using 

MATLAB R2011b (7.13.0.564), applying the strong Wolfe-Powell line search. 

All of the numerical experiments were run on the same PC with an Intel (R) 

CoreTM i3-M350 (2.27GHz) CPU, 4GB of RAM, and the Windows 7 operating 

system. In order to assess the reliability of the new proposed method, HRM, we 

tested this method against the well-known classical and modified methods of the 

FR, PRP, MPRP, and DPRP methods using the same problems, and assumed that 

the best method should require fewer iterations and less CPU time. All of these 

algorithms terminated when .10 6kg  The step size k  satisfies the strong 

Wolfe- Powell conditions, with 410 , and 001.0 . For the MPRP method, we 

chose 131    and 32  , where 3 in DPRP method. A list of test functions, 

Dimension, and the initial points used are shown in Table 1. In some cases, the 

computation stopped due to the failure of the line search to find the positive step 

size, and thus it was considered as a failure. In addition, we considered the search 

to have failed if the number of iterations exceeded 1,000 or CPU execution time 

exceeded 500 seconds. Numerical results were relatively compared with the CPU 

time and number of iterations. The performance results are shown in Figures 1 

and 2 respectively, using a performance profile introduced by Dolan and More 

[40]. 

 

 

Table 1. A list of problem functions 

No Function Dimension Initial points    

1 Six Hump Camel                                            2 -10, -8, 8, 10 

2 Booth                                                     2 10, 25, 50, 100 

3 Treccani                                                2 5, 10, 20, 50 

4 Zettl                                                      2 5, 10, 20, 30 

5 Leon 2 2, 5, 8, 10 

6 Three Hump 2 20, 50, 60, 150 

7 Extended Wood 4 3, 5, 20, 30 
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8 Quartic 4 5, 10, 15, 20 

9 Colville 4 2, 4, 7, 10 

10 Extended Maratos 2, 4, 10, 100 1, 5, 8, 10 

11 Fletcher 4, 10, 100, 500, 1000 7, 9, 11, 13 

12 Perturbed Quadratic 2, 4, 10, 100, 500, 1000 1, 5, 10, 15 

13 Extended Himmelblau 100, 500, 1000, 10000 50, 70, 100, 125 

14 Extended Rosenbrock 2, 4, 10, 100, 500, 1000, 

10000 
13, 25, 30, 50 

15 Shallow 2, 4, 10, 100, 500, 1000, 

10000 
10, 25, 50, 70 

16 Extended Tridiagonal 1 2, 4, 10,100, 500, 1000, 

10000 
12, 17, 20, 30 

17 Generalized Tridiagonal 1 2, 4,10, 100 25, 30, 35, 50 

18 Extended white & Holst 2, 4,10,100, 500, 1000, 

10000 
3, 10, 30, 50 

19 Generalized Quartic 2, 4,10,100, 500, 1000, 

10000 
1, 2, 3, 5 

20 Extended Powell 4, 8, 20, 100, 500, 1000 4, 5, 7, 30 

21 Extended Denschnb 2, 4, 10, 100, 500, 1000, 

10000 
8, 13, 30, 50 

22 Hager 2, 4, 10, 100 1, 3, 5, 7 

23 Extended  Penalty 2, 4, 10, 100 10, 50, 75, 100 

24 Quadrtic QF2 2, 4, 10, 100 ,500, 1000 10, 30, 50, 100 

25 Extended Quadratic 

Penalty QP2 

2, 4, 10, 100, 500, 1000, 

10000 
17, 18, 19, 20 

26 Extended Beale 2, 4,10, 100, 500, 1000, 

10000 
1, 3, 13, 30 

27 Diagonal 2 2, 4, 10, 100, 500, 1000 -1, 1, 2, 3 

28 Raydan1 2, 4, 10,100 1, 3, 5, 7 

29 Sum Squares 2, 4, 10,100, 500, 1000 1, 10, 20, 30 

30 Generlized Tridiagonal 2 2, 4, 10, 100 1, 10, 20, 30 

31 Quadratic QF1 2, 4, 10,100, 500, 1000 1, 2, 3, 4 

32 Dixon & Price 2, 4, 10, 100 100, 125, 150, 

175 

 

Under a strong Wolfe-Powell line search, the performance profile of all 

methods measured by the number of iterations required is shown in Figure 1, and 

the performance profile based on the CPU time used is in Figure 2. The shapes of 

the profile plots in both Figures 1 and 2 are almost alike. A thorough inspection of 

the left side of both figures indicates that the lowest curve represents the FR 

method. Therefore, this method possesses the lowest performance. The top left 

side curve indicates that the PRP method is the best performer. The curves for 

methods DPRP, MPRP, and HRM fall in between the two extreme curves. Thus, 

the performance of this set of methods is in the middle of the sets based the 

number of iterations and CPU time. 
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From results shown in Figures 1 and 2, it is evident that the FR method 

achieved a success rate of only 0.65, while the PRP method scored 0.79, and the 

DPRP method recorded 0.88. Furthermore, the MPRP method achieved 0.94, and 

our new method, HRM achieved 1, that is, our new method scored a 100% success 

rate. Such result indicates that HRM method is the best among the four methods in 

the perspectives of the number of iterations and the CPU time. Hence, our new 

method successfully solved all the test problems, and it is competitive with the 

well-known conjugate gradient methods for unconstrained optimization. 
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Figure 1: Performance profile relative to the number of iterations 
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Figure 2: Performance profile relative to the CPU time 
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5. Conclusion 
 

In this paper, we proposed a new conjugate gradient method for unconstrained 

optimization. Results showed that it could satisfy the sufficient descent condition 

and converge globally if the strong Wolfe-Powell line search was used. Numerical 

results show that the HRM method is efficient for the addressed problems. 
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