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Abstract 

 
In this paper, we suggest a new nonlinear conjugate gradient method for 

solving large scale unconstrained optimization problems. We prove that the new 
conjugate gradient coefficient kβ  with exact line search is globally convergent. 
Preliminary numerical results with a set of 116 unconstrained optimization 
problems show that kβ  is very promising and efficient when compared to the 
other conjugate gradient coefficients Fletcher - Reeves )(FR and Polak -Ribiere – 
Polyak )(PRP . 
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1. Introduction 
 

In this paper, we focus our attention on the unconstrained optimization 
problem, 

 )(min xf
nRx∈             

   (1.1) 

Where RRf n →:  is continuously differentiable function and nR  denotes an 
n-dimensional Euclidean space. We denote by )(xg , the gradient of f at x . The  
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conjugate gradient (CG) method is the best methods for solving (1.1), especially 
when the dimension is large. The iterates of the CG method for solving (1.1) are 
obtained by 

,...2,1,0,1 =+=+ kdxx kkkk α          (1.2) 
 

Where kx is current iterate point and the kα is step size. The step size is computed 
by carrying out some line search, for example, the exact line search where, 
 

)(min
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   (1.3) 

 
The kd  is the search direction defined by 
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Where )( kk xgg =  and kβ is a scalar.  The most well-known classical formula for

kβ are the Hestenes-Stiefe )(HS  method [11]. The Fletcher – Reeves )(FR  method 
[7]. The Polak-Ribiere -Polyak )(PRP  method [15, 16]. The conjugate descent

)(CD  method[6]. The Liu – Storey )(LS  method [14] and the Dai – Yuan )(DY

method [2]. The parameters  of these kβ as follows 
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The most studied properties of CG methods are its global convergence properties. 
Zoutendijk [22] and Powell [17] proved that FR method with exact line search is 
globally convergent. Zhang et al [13], Proposed a modified FR method MFR which  
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is globally convergent under inexact line search. Polyak [16] and Powell [18] 
showed that PRP has a good numerical performance, but does not have such good 
convergence property. Touati-Ahmed and Storey [20], Gilbert and Nocedal [8] 
gave another way to discuss the global convergence of  the PRP  method with 
the weak Wolfe – Powell line search, where the parameter kβ  in (1.6) is not 
allowed to be negative, }0,max{ PRP

kk ββ = , therefore, during the past few years, 
many authors has been investigated to create new formula for kβ ,[3, 4, 9, 10, 19, 
21]. 
In this paper, we will show a new kβ  in section 2. In section 3, we will study the 
sufficient descent condition and the global convergence proof of the new kβ . In 
section 4, we present the numerical results and discussion. Finally, we present the 
conclusions in section 5. 
 
2. New kβ  parameter and algorithm 
 

In this section, we present a modified of PRP  method which is known as
MRM
kβ , where MRM  denotes Mohamed, Rivaie and Mustafa, 

MRM
kβ is defined by,  
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(2.1) 

 
The following algorithm is a general algorithm for solving optimization by CG 
methods. 
 
Algorithm (2.1) 
Step 1: Given 0,0 ≥∈ εnRx , set 00 gd −=  if  ε≤0g  then stop. 
Step 2: Compute kα  by exact line search (1.3). 
Step 3: Let )(, 111 +++ =+= kkkkkk xggdxx α  if ε<+1kg  then stop. 
Step 4: Compute kβ  by formula (2.1), and generate 1+kd  by (1.4). 
Step 5: Set 1+= kk  go to Step 2. 
 

The following assumptions are often used in the studies of the conjugate 
gradient methods. 
 
Assumption A. )(xf is bounded from below on the level set

)}()(,{ 0xfxfRx n ≤∈=Ω , where 0x is the starting point. 
Assumption B.  In some neighbourhood N of, the objective function is 
continuously differentiable, and its gradient is Lipschitz continuous, that is there 
exists a constant 0>L such that 
 

NyxyxLygxg ∈∀−≤− ,)()( .           (2.2) 
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3. The Global Convergence properties   
 
In this section, we study the global convergent properties of MRM

kβ , first we need to 
simplify the MRM

kβ , so that the proof will be easier. From (2.1) we know that 
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Thus we get,  0≥MRM

kβ  
Also 

1
2

1

1
1

2

1
2

1

1
1

2

−−

−
−

−−

−
−

+

+

≤
+

−

=
k

T
kk

k
T
k

k

k
k

k
T
kk

k
T
k

k

k
k

MRM
k

dgg

gg
g
g

g

dgg

gg
g
g

g
β  

2
1

2

1
2

1

1
1

2

2

−−−

−
− ≤
+

+

≤
k

k

k
T
kk

kk
k

k
k

g

g

dgg

gg
g
g

g
 

 
Hence we obtain 
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The following lemmas are very useful in the process of the studies on the 
conjugate gradient methods 
 
Lemma 3.1. 
Suppose that Assumptions A and B hold, let kx be generated by Algorithm 2.1 
where, kd  satisfies 0<k

T
k dg for all k , and kα is obtained by (1.3), then, 

∞<∑
∞

=0
2

2)(

k k

k
T
k

d

dg             (3.1)  

This theorem show that MRM
kB  has an advancement that the directions will 

approach to the steepest descent directions while the step length kα  is small. 
 
Theorem 3.1. 
Suppose that Assumptions A and B hold, }{ kx  generated by the Algorithm 2.1, 
where the step size kα  is determined by the exact line search (1.3). Then (3.1) 
holds for all  0≥k . 
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Proof. Suppose that for all k , 0≠kg . If 0=k  then 2

00000 )( gcggdg TT −=−=  . If 
at a point kx , kd  is not a descent direction, then by the exact line search, we 
have kk xx =+1 which implies kk gg =+1 [21]. From (2.1), we have 0=MRM

kB . This 
means that at those points the directions will turn out to be the steepest descent 
directions. Those points are denoted by }0:{1 == MRM

kk BxP  and the other points are 
denoted by }0:{2 ≠= MRM

kk BxP . 
For all the points in 1P , since the directions are the steepest descent directions, 
from Lemma 2.1, we have 
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The same as the above proof, for the points in 2P , we also have 
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From (3.2) and (3.3) we have, 
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The proof is completed. 
Theorem 3.2 
Suppose that Assumptions A and B hold, the sequence }{ kx  is generated by 
Algorithm 2.1, if 0→= kkk dS α  while ∞→k , then 

0inflim =
∞→

k
k

g                (3.4)  

Proof. Let kθ  be the angle between kg−  and kd , where 
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search direction defined by (1.4), the following relations hold true: 
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If (3.4) does not hold, then, for all k , there exists 0>c  such that 

cgk ≥                 (3.6) 
By 0→kS  and Lipschitz condition (2.2), there must exist an integer 0≥M  for all

Mk ≥ , such that 

cgg kk 4
1

1 ≤−+            (3.7) 

 
Combining (3.5) and (3.7), we obtain 

kk θθ sec
2
1tan 1 ≤+           (3.8) 

 
We know that, for all )

2
,0[ πθ ∈ , the following inequality holds: 
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From (3.8) and (3.9) we get, 
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From this result, we note that the angle kθ  must be always less than some angle θ  

where, 
2
πθ < , but by the Theorem 3.1, we have 
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This implies 0inflim =

∞→
k

k
g , which contradicts (3.6). The proof is completed. 

 
4. Numerical results and discussions 
 

In this section, we present the computational performance of a MATLAB 
program on a set of 116 unconstrained optimization test problems. We selected 24 
test functions considered in Andrei [1], each of them is tested in different 
variables. We performed a comparison with two CG methods Fletcher – Reeves 

)(FR and Polak-Ribiere-Polyak )(PRP , we considered 610−=ε   and the gradient 
value as the stopping criteria as Hillstrom [12] suggested that ε≤kg  as the 
stopping criteria. For each of the test functions problem, we used four initial 
points, starting from a closer point to the solution and moving on to the one that is 
furthest from it. A list of problem functions and the initial points used are shown  
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in table1, where the exact line search was used to compute the step size. The CPU 
processor used was Intel (R) CoreTM i3-M350 (2.27GHz), with RAM 4 GB. In 
some cases, the computation stopped due to the failure of the line search to find 
the positive step size, and thus it was considered a failure. Numerical results are 
compared relative on the CPU time and number of iteration. The performance 
results are shown in Figs.1 and 2 respectively, using a performance profile 
introduced by Dolan and More [5]. 
 
 
 
No Function Dimension Initial points    
1 Three Hump                                          2 (-10,-10),(10,10),(20,20),(40,40) 
2 Six Hump                                              2 (-10,-10),(-8,8),(8,8),(10,10) 
3 Booth                                                     2 (10,10),(25,25),(50,50),(100,100) 
4 Treccani                                                2 (5,5),(10,10),(20,20),(50,50) 
5 Zettl                                                      2 (5,5),(10,10),(20,20),(50,50) 
6 Diagonal 4 2,4, 10,100,500,1000 (1,..,1),(3,…,3),(6,…,6),(12,…,12) 
7 Perturbed Qua.        2,4, 10,100,500,1000 (1,…,1) ,(3,…,3) ,(5,…,5) , (10,…,10) 
8 E-Himmelblau              10,100,500,1000,10000 (50,..,50),(70,..,70),(100,..,100) , (125,..,125) 
9 E-Rosenbrock 10,100,500,1000,10000 (13,…,13),(25,…,25),(30,…,30),(50,…,50) 
10 Shallow 10,100,500,1000,10000 (10,…10),(25,…,25),(50,…,50),(70,…,70) 
11 E-Tridiagonal 1 10,100,500,1000,10000 (6,…,6),(12,…,12),(17,…,17),(20,…,20) 
12 G-Tridiagonal1     2,4,10,100 (7,…,7),(10,…,10), (13,…,13),(21,…,21) 
13 E-white-Holst 2,4,10,100,500,1000,10000 (3,…,3),(5,…,5) ,(7,…,7), (10,…,10) 
14 G- Quartic 2,4,10,100,500,1000,10000 (1,…,1),(2,…,2),(5,…,5),(7,…,7) 
15 E- Powell 4,20,100,500,1000 (2,…,2),(4,…,4),(6,…,6),(8,…,8) 
16 E-Denschnb 2,4,10,100,500,1000,10000 (8,…,8),(13,…,13),(30,…,30),(50,50) 
17 Hager 2,4,10,100 (7,…,7) ,(10,…,10), (15,…,15), (23,…,23) 
18 E- Penalty 2,4,10,100 (80,..,80),(10,..,100),(111,..,111),(150,..,150) 
19 Quadrtic QF2 2,4,10,100,500,1000 (5,…,5) ,(20,…,20) ,(50,…,50) ,(100,..,100) 
20 E - QP2 2,4,10,100,500,1000 (10,..,10) ,(20,..,20), (30,..,30) ,(50,..,50) 
21 E- Beale 2,4,10,100,500,1000,10000 (-1,…,-1) ,(3,…,3) ,(7,…,7) , (10,…,10) 
22 Diagonal 2 2,4,10,100,500,1000 (1,…,1) ,(5,…,5) ,(10,…,10),(15,…,15) 
23 Raydan1 2,4,10,100 (1,…,1) ,(3,…,3) ,(7,…,7) , (10,…,10) 
24 Sum Squares 2,4,10,100,500,1000 (1,…,1) ,(3,…,3) ,(7,…,7) , (10,…,10) 

 

 

 

According to the rules considered in [5], we know that the method whose 
performance profile plot on top right will be better than the rest of the other 
methods. 
Figures 1-2 show that the performances of these methods are relative to the 
number of iteration and the CPU time. From figures 1-2, it is easy to see that 
MRM is the best among the two methods FR and PRP , the performance of PRP

seems to be faster than MRM , but it can solve only 93% of the problems and FR
solved only 70%, where MRM can solve all the test problems and reach 100%, the 
performance of MRM lies between FR and PRP . In other words, MRM method is 
competitive to the other two methods and its notable formula. 
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5. Conclusion and further research 
 

This paper gives a new conjugate gradient method for solving unconstrained 
optimization problems. Under the exact line search, this kβ  possesses the global 
convergence condition. Numerical results show that our method is competitive to 
other two conjugate gradient methods, Fletcher Reeves )(FR and Polak Ribiere 
Polyak )(PRP , and come out with best numerical results. 

For further research, we should study the new method with the strong 
Wolfe-Powell line search. 
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