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Abstract 

 

In this paper, an efficient nonlinear modified PRP  conjugate gradient 

method is presented for solving large-scale unconstrained optimization problems. 

The sufficient descent property is satisfied under strong Wolfe-Powell (SWP) line 

search by restricting the parameter 4/1 . The global convergence result is 

established under the (SWP) line search conditions. Numerical results, for a set 

consisting of 133 unconstrained optimization test problems, show that this method 

is better than the PRP  method and the FR  method. 
 

Keywords: Conjugate gradient coefficient, Inexact line Search, Strong Wolfe–
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1. Introduction 
 

Nonlinear conjugate gradient methods are well suited for large-scale 

problems due to the simplicity of their iteration and their very low memory 

requirements, that is designed to solve the following unconstrained optimization 

problem: 

 
nRxxf ,)(min             (1) 
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where RRf n : is a smooth, nonlinear function, and its gradient is denoted by 

)()( xfxg  The iterative formula of the conjugate gradient methods is given by 

 

,...2,1,0,1  kdxx kkkk            (2) 

where kx is current iterate point and k is a step length, which is computed by 

carrying out a line search, and kd  is the search direction defined by 
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where k  is a scalar, and )( kk xgg  . 

Various conjugate gradient methods have been proposed, and they mainly differ 

in the choice of the parameter k . Some well-known formulas for k  being given 

below: 
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Where . denotes the 2l  -norm. The corresponding method is respectively called , 

HS  (Hestenes-Stiefel [11]), FR  (Fletcher_Revees [8]), PRP  

(Polak_Ribiére_Polyak [18, 19]), CD  (Conjugate Descent [7]), LS  (Liu-Storey 

[15]), and DY  (Dai_Yuan [5]) conjugate gradient method. The convergence 

behavior of the above formulas with some line search conditions has been studied 

by many authors for many years (e.g.[1, 3-5, 7, 9, 10, 12, 13, 15-17, 20-24]). 

In the already-existing convergence analysis and implementations of the 

conjugate gradient method, the weak Wolfe–Powell (WWP) line search 

conditions are  

k
T
kkkkkk dgxfdxf   )()(           (4) 

 

k
T
kk

T
k dgdg 1            (5) 

 

where 10    and kd is a descent direction.  
The strong Wolfe–Powell conditions consist of (4) and, 

 

k
T
kk

T
kkk dgddxg   )(

          (6) 

Furthermore, the sufficient descent property, namely, 
2

kk
T
k gcdg 

            (7) 

Where c is a positive constant, is crucial to insure the global convergence of the 

nonlinear conjugate gradient method with the inexact line search techniques [1, 9, 

21]. 
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2. New formula for kB  and its properties 

 

Therefore, many of the variants of the PRP method had been widely studied. In 

this paper, a variant of the PRP method is known as  MRM
k , where MRM

 
denotes 

Mohamed, Rivaie and Mustafa, 
 

MRM
k  is defined by 
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Now we give the following algorithm firstly. 

Algorithm (2.1) 

Step 1: Given 0,0  nRx  ,set 00 gd   if  0g  then stop. 

Step 2: Compute k  by (SWP) line search. 

Step 3: Let )(, 111   kkkkkk xggdxx   if 1kg  then stop. 

Step 4: Compute k  by formula (8), and generate 1kd  by (3). 

Step 5: Set 1 kk  go to Step 2. 

 

The following assumptions are often used in the studies of the conjugate 

gradient methods. 

Assumption A. )(xf is bounded from below on the level set

)}()(,{ 0xfxfRx n   , where 0x  is the starting point. 

Assumption B. In some neighborhood N  of    , the objective function is 

continuously differentiable, and its gradient is Lipschitz continuous, that is there 

exists a constant   0L  such that 

                                       NyxyxLygxg  ,)()( .          

In [9], Gilbert and Nocedal introduced the property (*) which plays an 

important role in the studies of CG methods. This property means that the next 

research direction approaches to the steepest direction automatically when a small 

step-size generated, and the step-sizes are not produced successively [24]. 

Property (*). Consider a CG method of the form (2) and (3). Suppose that, for all

0k ,  
  kg0             

where   and  are two positive constants. We say that the method has the property 

(*), if there exist constants 1b , 0  such that for all k ,   kk Sb, implies 

,
2

1

b
k  where kkk dS  . 

 

The following lemma shows that the new method
MRM
k  has the 

property(*). 
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Lemma 2.1. Consider the method of form (2) and (3), Suppose that Assumptions 

A and B hold, then, the method MRM
k has the property (*). 

Proof. Set 
bL

b









4
,1

)( 2

3

2




  . By (8) and (10) we have 

 

b
g

ggg

dgg

g
g

g
gg

k

kkk

k
T
kk

k
k

k
k

T
k

MRM
k 


























3

2

2

2

2

1

1

1

2

1

1
1 )(

)()()(
















  

 

From the Assumption B, (9) holds. If kS then, 
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The proof is finished. 

 

3. The global convergence properties 
 

The following theorem shows that the formula MRM with SWP line search 

possess the sufficient descent condition. 

Theorem 3.1. Suppose that the sequences }{ kg and }{ kd  are generated by the 

method of form (2), (3) and (8), and the step length k  is determined by the 

(SWP) line search (4) and (6), if, then the sequence }{ kd possesses the sufficient 

descent condition (7). 

Proof. By the formulae (8), we have 

 

 

0

1

2

1

1

1

2

1

2

1

1

1

2

1

2

1

1

1

2




































k
T
kk

kk

k

k

k

k
T
kk

k
T
k

k

k

k

k
T
kk

k
T
k

k

k

k

MRM
k

dgg

gg
g

g
g

dgg

gg
g

g
g

dgg

gg
g

g
g

  

Thus we get,  0MRM
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Hence we obtain 
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Using (6) and (9), we get 
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We prove the descent property of }{ kd by induction. Since ,0
2

000  gdgT  if 

00 g  , now suppose that  

,,....,2,1, kidi  are all descent directions, that is  0i
T
i dg  

By (10), we get 

    )(
2

2

2

1

11 k
T
k

k

k

k
T
k

MRM
k dg

g

g
dg 



 

  

     (12) 

That is, 

   k
T
k

k

k

k
T
k

MRM
kk

T
k

k

k
dg

g

g
dgdg

g

g
 22

2

2

1

112

2

1 






 

     (13) 

 (11) and (13) deduce, 

22

1

11

2

2
1

2
1

k

k
T
k

k

k
T
k

k

k
T
k

g

dg

g

dg

g

dg 




  

 

By repeating this process and the fact ,
2

000 gdgT  we have, 









k

j

j

k

k
T
k

k

j

j

g

dg

0
2

1

11

0

)2(2)2(          (14) 

Since 




21

1
)2()2(

00





 j

j
k

j

j  

(14) can be written as 

 21

1
2

21

1
2

1

11











k

k
T
k

g

dg
       (15) 

By making the restriction )
4

1
,0(  , we have 011  k

T
k dg . So by induction, 

0k
T
k dg holds for all 0k . 



1828                                                                                    Mohamed Hamoda et al. 

 

 

Denote 
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this implies that (7) holds. The proof is complete. 
 

The following condition known as Zoutendijk condition is used to prove 

the global convergence of nonlinear CG methods[23, 25]. 

Lemma 3.1. Suppose that Assumptions A and B hold. Consider a CG method of 

the form (2) and (3), where kd satisfies 0k
T
k dg , for all k , and k is obtained by 

(SWP) line search (4) and (6), Then, 

     
 




0
2

2

k k

k
T
k

d

dg
         (17) 

 

The proof had been given in [14, 22]. In[9], Gilbert and Nocedal introduced the 

following important theorem. 

Theorem 3.2. Consider any CG method of form (2) and (3), that satisfies the 

following conditions: 

(1) 0k  

(2) The search directions satisfy the sufficient descent condition. 

(3) The Zoutendijk condition holds. 

(4) Property(*) holds. 

If the Lipschitz and boundedness Assumptions hold, then the iterates are globally 

convergent. 
 

From (7), (9), (17) and Lemma 2.1, We found that the MRM method with 

the parameter 4/10     satisfies all four conditions in theorem 3.2 under the 

strong Wolfe-Powell line search, so the method is globally convergent. 

 

4. Numerical results and discussion 
 

In this section,  we selected 27 test functions considered in Andrei [2]. For each 

test function we have considered from 1 to 7 numerical experiments with number 

of variables lay in the range from 2 to 10000, shown in table1,  also for each test 

function, we used four initial points, starting from a closer point to the solution 

and moving on to the one that is furthest from it. We performed a comparison 

with two CG methods FR  and PRP . The step size k  satisfies the strong Wolfe- 

Powell conditions, with 410  , 001.0  and 610kg  . A list of functions and 

the initial points used are shown in table1, where all the problems are solved by 

MATLAB program. We used the strong Wolfe Powell line search to compute the 

step size. The CPU processor used was Intel (R) CoreTM i3-M350 (2.27GHz), with 

RAM 4 GB.   In some cases, the computation stopped due to the failure of the line 

search to find the positive step size, and thus it was considered a failure. In 

addition, we considered a failure if the number of iterations exceeds 1000 or CPU  
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time exceeds 500 (Sec). Numerical results are compared relative on the CPU time 

and number of iterations. The performance results are shown in Figs.1 and 2 

respectively, using a performance profile introduced by Dolan and More [6]. 
 
 

Table 1. A list of problem functions 

 
No Function Dimension Initial points    

1 Six Hump                                             2 -10, 10, -8, 8 

2 Booth                                                     2 10, 25, 50, 100 

3 Treccani                                                2 5, 10, 20, 50 

4 Zettl                                                      2 5, 10, 20, 30 

5 Extended Maratos 2, 4,10, 100 1, 5, 8, 10 

6 Fletcher 4, 10, 100, 500, 1000 7, 9, 11, 13 

7 Perturbed Quadratic 2, 4, 10, 100, 500, 1000 1, 5, 10, 15 

8 Extended Himmelblau 100, 500, 1000, 10000 50, 70, 100, 125 

9 Extended Rosenbrock 2, 4, 10, 100, 500, 1000, 10000 13, 25, 30, 50 

10 Shallow 2, 4, 10, 100, 500, 1000, 10000 10, 25, 50, 70 

11 Extended Tridiagonal 1 2, 4, 10,100, 500, 1000, 10000 12, 17, 20, 30 

12 Generlyzed Tridiagonal 1 2, 4,10, 100 25, 30, 35, 50 

13 Extended white & Holst 2, 4,10,100, 500, 1000, 10000 3, 10, 30, 50 

14 Generalized Quartic 2, 4,10,100, 500, 1000, 10000 1, 2, 3, 5 

15 Extended Powell 4, 8,  20, 100, 500, 1000 4, 5, 7, 30 

16 Extended Denschnb 2, 4, 10, 100, 500, 1000, 10000 8, 13, 30, 50 

17 Hager 2, 4, 10, 100 1, 3, 5, 7 

18 Extended  Penalty 2, 4, 10, 100 10, 50, 75, 100 

19 Quadrtic QF2 2, 4, 10, 100 ,500, 1000 10, 30, 50, 100 

20 Extended Quadratic Penalty QP2 2, 4, 10, 100, 500, 1000, 10000 17, 18, 19, 20 

21 Extended Beale 2, 4,10, 100, 500, 1000, 10000 1, 3, 13, 30 

22 Diagonal 2 2, 4, 10, 100, 500, 1000 -1,1, 2, 3 

23 Raydan1 2, 4, 10,100 1, 3, 5, 7 

24 Sum Squares function 2, 4, 10,100, 500, 1000 1, 10, 20, 30 

25 Generlized Tridiagonal 2 2, 4, 10, 100 1, 10, 20, 30 

26 Quadratic QF1 2, 4, 10,100, 500, 1000 1, 2, 3, 4 

27 Dixon and Price 2, 4, 10, 100 100, 125, 150, 175 

 
 

In figures 1-2, the horizontal axis of the figure gives the percentage of the 

test problems for which a method is the fastest, while the vertical axis gives the 

percentage of the test problems that were successfully solved by each method. 

Fig.1 presents the performance profiles of FRMRM, and PRP  relative to the number 

of iterations. Fig.2 presents the performance profiles of the three methods relative 

to the CPU time. The interpretation in Figures 1-2 shows that the new method 

outperform the other two methods relative to both performance, number of 

iterations and CPU time, since MRM  can solve all the test problems and reach 

100%, while PRPcan solve only 79% of the problems and FRsolved only 65%, the 

performance of MRM  lies between FRand PRPand we can say that MRM  near PRP

. Hence we considered that MRM method is computationally efficient. 
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Figure 1. Performance profile relative to the 

number of iterations. 

 Figure 2. Performance profile relative to the 

CPU time. 

 

5. Conclusion and future research  
 

In this paper, we proposed a new k  for unconstrained optimization, we 

prove that it is a global convergence with strong Wolfe Powell line search. Based 

on our numerical  experiments, we concluded that the new method more efficient 

and more robust than the classical methods FRand PRP . 

Our future work is concentrated on studying the convergence properties of 

our new method using different inexact line searches. 
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