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ABSTRACT 

This paper deals with a new nonlinear conjugate gradient method for solving large-scale 

unconstrained optimization problems. We prove that the new conjugate gradient 

coefficients  with exact line search is globally convergent. Preliminary numerical results 

show that  is very efficient when compared to the other classical conjugate gradient 

coefficients FR,PRP, NPRP, and RMIL. 
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1.  INTRODUCTION 

Consider the following -variables unconstrained optimization problem: 

,                                              (1) 

where  denotes an n-dimensional Euclidean space and  is 

smooth,and its gradient  is available. The conjugate gradient (CG) 

method is a powerful method for solving (1), because of its simplicity and 

low memory requirement, especially when the dimension is large. The 
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iterative formula of the conjugate gradient methods for solving (1) is given 

by  

       (2) 

where is current iterate point and  is a step length which is computed 

by carrying out a line search, for example, the exact line search where, 

                   (3) 

The  is the search direction defined by 

           (4) 

where  and  is a parameter that determines the different 

conjugate gradient methods, for example, well-known cases of  can be 

taken as: 

    (Hastens - Stiefel[1], 1952 )  (5) 

   (Fletcher-Reeves[2], 1964 )    (6) 

    (PolakRibierePolyak[3, 4], 1969)  (7) 
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     (Conjugate Descent[5],1987)    (8) 

     (Liu – Storey[6], 1991)    (9) 

    (Dai – Yuan [7], 1999)    (10) 

The convergence behaviour of the above formulas with some line search 

conditions has been studied by many authors for many years (see [8-

14]).Zoutendijk[15] and Powell [16] proved that method with exact 

line search is globally convergent. Polak and Ribie`re[3] proved that the 

method with the exact line search is globally convergent. But Powell 

[4] showed that there exist non-convex functions on which the method 

does not converge globally. He suggested that  should not be less than 

zero. Gilbert and Nocedal[17] proved that the modified method 

 is globally convergent with the Wolfe–Powell line 

search. There are many new formulas that have been studied by many 

authors (see [18-28] etc.) 

In this paper, we will show a new  in Section 2. In Section 3, we will 

study the sufficient descent condition and the global convergence proof of 

the new . In Section 4, we present the numerical results and discussion. 

Finally, we present the conclusions in Section 5. 
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2.NEW  PARAMETER AND ALGORITHM 

Recently, Wei et al. [25]have presented a variant of the PRP method which 

is called the WYL method. Zhang [29] based on WYLhas improved a new 

conjugate gradient method called,NPRP and he proved that the NPRP 

method satisfies descent condition under strong Wolfe line search. Zhang et 

al. [14] proposed another modified method known as MPRP ,and Dai and 

Wen [20] propose modified NPRP method known as DPRP. Rivaieet al.[30] 

proposed another modified method known as RMIL. In this paper, 

enlightened by the above ideas, a Modified PRP Conjugate Gradient 

Method will be proposed as follows: 

                    (11) 

where, denotes the authorsHamoda, Rivaie and Mustafa. 

The following algorithm is a general algorithm for solving optimization by 

CG methods 

Algorithm 2.1 

Step 1: Given , set  if   then stop. 

Step 2: Compute  by exact line search (3). 

Step 3: Let if then stop. 

Step 4: Compute  by formula (11) ,and generate  by (4). 

Step 5: Set  go to Step 2. 
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3. GLOBAL CONVERGENCE ANALYSIS  

In this section, we study the global convergent properties of and begin 

with the sufficient descent condition. 

3.1 Sufficient descent condition  

For the sufficient descent condition to hold, 

     (12) 

The following theorem shows that our new formula with exact line search 

possess the sufficient descent condition. 

Theorem 3.1. Let and  be sequence generated by algorithm 2.1, 

then (12) holds for all   . 

Proof 

We proof by induction, that if  then  

Hence, the condition holds true; now we need to prove that:  

  for  

From (4) we have  

Multiply both sides by  

  (13) 

For exact line search, we know that . Thus  
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Hence this condition holds true for . Therefore, the sufficient descent 

condition holds. □ 

3-2 Global convergence properties  

To study global convergence properties, we need to simplify the , so 

that the proof will be easier. From (11) we know that  

   (14) 

Using triangle inequality and Cauchy-Schwarz inequality, to get 

 

    (15) 

Thus we get  

 

Also from (14) using triangle inequality and Cauchy-Schwarz inequality, to 

get 
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Hence we obtain 

        (16)   

To prove the global convergence of the CG method, we first make the 

following assumption. 

Assumption 3.1 

(i)  The level set  is bounded, where  is the 

starting point. 

(ii)  In some neighbourhood of   , the objective function is continuously 

differentiable, and its gradient is Lipschitz continuous, that is there exists a 

constant    such that 

     (17) 

The following lemma which is famous for global convergence properties is 

by  Zoutendijk[15]. 
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Lemma 3.1 

Suppose Assumption (3.1) holds, let be generated by Algorithm (2.1) and 

 satisfy for all , and is obtained by (3), then we have 

 

Theorem 3.2. Suppose that Assumptions (3.1) holds, the sequence  is 

generated by Algorithm 2.1, if  while , then 

       (18)  

Proof 

Let  be the angle between  and , where 

 , 

Then, by the exact line search, we have , where the search 

direction defined by (4), the following relations hold true: 
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If (18) does not hold, then, for all , there exists  such that 

        (20) 

By  and Lipschitz condition (17), there must exist an integer 

 for all , such that 

       (21) 

Combining (19) and (21), we obtain 
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We know that, for all , the following inequality holds: 

       (23) 

from (22) and (23) we get, 

      (24) 

Utilizing (24) induce, 

 

From this result, we note that the angle  must always be less than some 

angle  where, , but by the Lemma (3.1), we have 

 

This implies that, , which contradicts (20). The proof is 

completed. Therefore, the new formula with the exact line search is 

globally convergent. Also in [31] the global convergence of with 

strong Wolfe-Powell line search was proved. 
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4. NUMERICAL RESULTS AND DISCUSSIONS 

In this section, we used 32th test functions considered in [32-34] to find the 

computational results to analyze the efficiency of We performed a 

comparison with four CG methodsFR, PRP, RMIL,andNPRP.We considered 

and the gradient value as the stopping criteria as Hillstrom[35] 

suggested that  as the stopping criteria. For each of the test 

functions, we used four initial points, starting from a closer point to the 

solution and moving on to the one that is furthest from it. A list of functions 

and the initial points used are shown in table 1, where all the problems are 

solved by MATLAB program. We used the exact line search to compute the 

step size. The CPU processor used was Intel (R) CoreTM i3-M350 

(2.27GHz), with RAM 4 GB. In some cases, the computation stopped due to 

the failure of the line search to find the positive step size, and thus it was 

considered a failure.Numerical results are compared relative on the CPU 

time and number of iterations. The performance results are shown in figure1 

and figure 2 respectively, using a performance profile introduced by Dolan 

and More [36]. 

TABLE 1. A LIST OF PROBLEM FUNCTIONS 

 

No Function Dimension Initial points    

1 Three Hump                                    2 -10,10,20,40 

2 Six Hump                                             2 -10,10, -8, 8 

3 Booth                                                     2 10,25,50,100 

4 Treccani 2 5, 10, 20, 50 

5 Zettl 2 5, 10, 20, 50 

6 Diagonal 4 2,4, 10,100,500,1000 1, 3, 6,12 

.HRM

610

kg
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7 Perturbed Quadratic 2,4, 10,100,500,1000 1,3,5, 10 

8 Extended Himmelblau 10,100,500,1000,10000 50,70,100, 125 

9 Extended Rosenbrock 2,4, 10,100,500,1000,10000 13,25,30,50 

10 Shallow 2,4, 10,100,500,1000,10000 10,25,50, 70 

11 Extended Tridiagonal1 2,4, 10,100,500,1000,10000 6,12,17,20 

12 Generlyzed Tridiagonal1  2,4,10,100 7,10, 13,21 

13 Extended white & Holst 2,4,10,100,500,1000,10000 3,5,7,10 

14 Generalized Quartic 2,4,10,100,500,1000,10000 1,2,5,7 

15 Extended Powell 4,20,100,500,1000 2,4,6,8 

16 Extended Denschnb 2,4,10,100,500,1000,10000 8,13,30,50 

17 Hager 2,4,10,100 7,10,15,23 

18 Extended  Penalty 2,4,10,100 80,10,111,150 

19 Quadrtic QF2 2,4,10,100,500,1000 5,20,50,100 

20 Extended Quadratic 

Penalty QP2 

2,4,10,100,500,1000 10,20,30,50 

21 Extended Beale 2,4,10,100,500,1000,10000 -1,3,7,10 

22 Diagonal 2 2,4,10,100,500,1000 1,5,10,15 

23 Raydan1 2,4,10,100 1,3,7,10 

24 Sum Squares 2,4,10,100,500,1000 1,3,7,10 

25 Generlized Tridiagonal2 2, 4, 10, 100 15,18,20,22 

26 Quadratic QF1 2, 4, 10,100, 500, 1000 3,5,8,10 

27 Fletcher 4, 10, 100,500,1000,10000 3,5,8,9 

28 Leon function 2 2,5,8,10 

29 Extended Wood 4 3,5,20,30 

30 Quartic function 4 5,10,15,20 

31 Matyas function 2 1,5,10,15 

32 Colville function 4 2,4,7,10 
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Figure 1: Performance profile relative to the number of iterations 
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Figure 2: Performance profile relative to the CPU time 
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From figures 1-2 it is easy to see that the method is the best among 

the four methods in the perspectives of the number of iterations and the 

CPU time. The  and methods are much better than  

method, where the method is preferable to the  method,and 

also, the method is preferable to the method, that is can 

solve 93% of the problems, can solve 91% of the problems,  

can solve 89% of the problems and solved only 70%. Hence our new 

method successfully solved all the test problems,and it is competitive among 

the well-known conjugate gradient methods for unconstrained optimization. 

5. CONCLUSION  

In this paper, we propose a new  for unconstrained optimization, we 

prove that it is a global convergence with exact line search, and come out 

with best numerical results to illustrate their efficiency. 
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