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Abstract 

 
Nonlinear conjugate gradient (CG) method holds an important role in solving large-scale unconstrained 
optimization problems. In this paper, we suggest a new modification of CG coefficient 𝛽𝑘 that satisfies 
sufficient descent condition and possesses global convergence property under strong Wolfe line 
search. The numerical results show that our new method is more efficient compared with other CG 
formulas tested. 
 
Keywords: conjugate gradient method, large-scale, global convergence, strong Wolfe line search, 
unconstrained optimization. 

 
Introduction 
 
The general form of an unconstrained optimization problem is defined by 

minxϵRnf(x) ,                                                                                          (1)  

where 𝑓: 𝑅𝑛 → 𝑅is a continuously differentiable function and its gradient 𝑔 ≡ ∇𝑓(𝑥)is available. 
The iterative formula of the CG method is given by 
 

Xk+1 = xk + αkdk      k = 0,1,2,…,                                                               (2) 
 

where 𝛼𝑘 the step-size computed by carrying out strong Wolfe line search procedure, defined as 
follows 

f(xk + αkdk) ≤ f(xk) + δαkgk
Tdk                                                                 (3) 

and 

|g(xk + αkdk)
Tdk| ≤ σ|gk

Tdk|                                                                   (4) 

where  0 < 𝛿 < 𝜎 < 1 The parameter𝑑𝑘 is the search direction defined by 

𝑑𝑘 = {
−𝑔𝑘,                                   𝑖𝑓  𝑘 = 0
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1,               𝑖𝑓   𝑘 ≥ 1

                                                               (5) 
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where βk ∈ R a scalar known as the CG coefficient. Examples of most well-known classical 

formulas for βk are Hestenes-Stiefel (HS) (Hestenes and Stiefel,1952), Fletcher-Reeves (FR) 
(Fletcher and Reeves, 1964), Polak-Ribiere-Polyak (PRP) (Polak and Ribiere, 1969), Conjugate 
Descent (CD) (Fletcher, 1980), Liu-Storey (LS) (Liu and Storey, 1991), and Dai-Yuan (DY) (Dai 
and Yuan, 1999). The parameters of these βk are given as follows: 
 

βk
HS = 

gk
T(gk − gk−1)

dk
T(gk − gk−1)

, βk
FR =

‖gk‖
2

‖gk−1‖
2
, βk

PRP =
gk
T(gk − gk−1)

gk−1
T gk−1

, 

βk
CD =

‖gk‖
2

dk−1
T gk−1

, βk
LS =

gk
T(gk − gk−1)

−dk−1
T gk−1

, βk
DY =

‖gk
2‖

dk−1
T (gk − gk−1)

. 

The convergence of CG method under different line searches has been studied by many authors 
such as Al-Baali (1985), Gilbert and Nocedal (1992), Liu and Storey (1991), Zoutendijk (1970), 
Touati-Ahmed and Storey (1990), and Andrei (2008). For further information, readers can refer 
to Abashar et al. (2017), Aini et al. (2017), Ghani et al. (2017a), Ghani et al. (2017b), Hamoda et 
al.  (2016), Kamfa et al. (2017), Mohamed et al. (2017), Omer et al. (2015), Osman et al. (2017), 
Rivaie et al. (2015), and Zull et al. (2017). 
 
Modified Formula and Algorithm 
 
Recently, Wei et al. (2006) gave a variant of the PRP method which is called the WYL method, 
written as 

𝛽𝑘
𝑊𝑌𝐿  =

𝑔𝑘
𝑇 (𝑔𝑘 −

‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘−1)

‖𝑔𝑘−1‖
2

  .                                                                               (6) 

The WYL method and PRP methods both come with restart properties. Zhang (2009) studied 
and improved WYL CG method and suggested the NPRP method, formulated as 

𝛽𝑘
𝑁𝑃𝑅𝑃 =

‖𝑔𝑘‖
2 −

‖𝑔𝑘‖

‖𝑔𝑘−1‖
|𝑔𝑘
𝑇𝑔𝑘−1|

‖𝑔𝑘−1‖
2

 .                                                                          (7) 

Zhang (2009) proved that the NPRP method satisfies descent condition under strong Wolfe line 
search. Later, Dai and Wen (2012) proposed a modified NPRP method as follows: 

βk
DPRP =

‖gk‖
2 −

‖gk‖

‖gk−1‖
|gk
Tgk−1|

μ|gk
Tdk−1| + ‖gk−1‖

2
,       μ > 1                                                          (8) 

Based on the above ideas, we present a new βkknown as βk
YHM, where YHM denotes Yasir, 

Hamoda and Mamat. The formula for βk
YHM is defined by 

𝛽𝑘
𝑌𝐻𝑀  =

{
 
 

 
 
𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

‖𝑔𝑘−1‖
2

                𝑖𝑓  0 ≤ 𝑔𝑘
𝑇𝑔𝑘−1 ≤ ‖𝑔𝑘‖

2

𝑔𝑘
𝑇 (𝑔𝑘 −

‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘−1)

‖𝑔𝑘−1‖
2

                            otherwise

                                      (9) 

The following algorithm is a general algorithm for solving optimization by CG methods. 

Algorithm 2.1:  
Step1: Given an initial pointx0ϵR

n, ε > 0, set d0 = −g0, k = 0 
Step2: Computeβkby formula (9) 

Step3: Compute dkbased on (3).If gk = 0, then stop. 
Step4: Compute αkby inexact line search. 
Step5: Update new point based on (2) 
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Step6: Convergence test and stopping criteria. If f(xk+1) < 𝑓(xk)and ‖gk‖ ≤ ϵ, then stop. 

Otherwise, set k = k + 1 and go to Step 1. 
 
Global Convergence analysis  

In this section, we study the global convergence properties of βk
YHM, starting with the sufficient 

descent condition. Firstly, we need to simplify βk
YHMso that the proving steps will be easier. From 

(9), we know that: 

                       βk
YHM  =

{
 
 

 
 
gk
T(gk − gk−1)

‖gk−1‖
2

          if 0 ≤ gk
Tgk−1 ≤ ‖gk‖

2

gk
T (gk −

‖gk‖

‖gk−1‖
gk−1)

‖gk−1‖
2

                    otherwise

 . 

If 0 ≤ gk
Tgk−1 ≤ ‖gk‖

2, then, 

           βk
YHM = 

gk
T(gk − gk−1)

‖gk−1‖
2

=
‖gk‖

2 − gk
Tgk−1

‖gk−1‖
2

≥ 0. 

Otherwise, 

                               βk
YHM =

gk
T(gk −

‖gk‖

‖gk−1‖
gk−1

‖gk−1‖
2

≥
‖gk‖

2 −
‖gk‖

‖gk−1‖
|gk
Tgk−1|

‖gk−1‖
2

. 

By Cauchy - Schwartz inequality, it is implied that 

βk
YHM ≥

‖gk‖
2 −

‖gk‖

‖gk−1‖
‖gk‖‖gk−1‖

‖gk−1‖
2

= 0. 

Hence, we can deduce that for both cases of 0 ≤ gk
Tgk−1 ≤ ‖gk‖

2 and otherwise, 

βk
YHM ≥ 0 .                                                                                    (10) 

 
Sufficient descent condition 
 
The sufficient descent condition is defined by: 

gk
Tdk ≤ −c‖gk‖

2   for  k ≥ 0 , c > 0    .                                            (11) 
The following theorem shows that YHM with inexact line search possesses the sufficient descent 
property. 
Theorem 1.Suppose that the sequence {gk} and {dk} are generated by Algorithm (2.1) and the 
step-length αkis determined by strong Wolfe line search. If gk ≠ 0, then the sequence 
{dk}satisfies the sufficient descent condition for all k ≥ 0. 
Proof. The proof of the descent property of {dk} is by induction. Firstly, we prove the theorem for 

the case of k = 0. 

Case (1):If 0 ≤ gk
Tgk−1 ≤ ‖gk‖

2, then 

βk
YHM = 

gk
T(gk − gk−1)

‖gk−1‖
2

. 

Since g0
Td0 = −‖g0‖

2 < 0, then condition (11) is fulfilled for k = 0. 

Now suppose that di, i = 1,2,3,… , k are all descent directions that isgi
Tdi < 0. From the strong 

Wolfe condition, and (10) 

|βk+1
YHMgk+1

T dk| ≤ σ
‖gk+1‖

2

‖gk‖
2 |gk

Tdk|.                                 (12) 

Now, we multiplydk+1 = −gk+1 + βk+1
YHMdkwith gk+1

T  to get  

gk+1
T dk+1 = −‖gk+1‖

2 + βk+1
YHMgk+1

T dk 
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We divide both sides by‖gk+1‖
2, which gives us  

gk+1
T dk+1
‖gk+1‖

2
= −1+ βk+1

YHM gk+1
T dk

‖gk+1‖
2
 .                    (13) 

Since gk
Tdk+1 < 0, then from (12), we have 

|βk+1
YHMgk+1

T dk| ≤ σ
‖gk+1‖

2

‖gk‖
2 (−gk

Tdk). 

Hence, 
‖gk+1‖

2

‖gk‖
2
σgk

Tdk ≤ βk+1
YHMgk+1

T dk ≤ −
‖gk+1‖

2

‖gk‖
2
σgk

Tdk                                        (14) 

Substitute (13) into (14),then 

−1 + σ
gk
Tdk

‖gk‖
2
≤
gk+1
T dk+1
‖gk+1‖

2
≤ −1− σ

gk
Tdk

‖gk‖
2
 

By repeating this process and taking into account that g0
Td0 = −‖g0‖

2, we get 

−∑σj
k

j=0

≤
gk+1
T dk+1
‖gk+1‖

2
≤ −2+∑σj

k

j=0

                                                        (15) 

Since ∑ σjk
j=0 < ∑ σj∞

j=0 =
1

1−σ
, equation (15) can be written as 

−
1

1 − σ
≤
gk+1
T dk+1
‖gk+1‖

2
≤ −2+

1

1 − σ
(16) 

By making the restrictionσϵ(0,
1

2
), we can see thatgk+1

T dk+1 < 0. Therefore, by induction,gk
Tdk < 0 

holds for allk ≥ 0. Substitutec = 2 −
1

1−σ
, 0 < 𝑐 < 1into (16) and we get(c − 2)‖gk‖

2 ≤ gk
Tdk ≤

−c‖gk‖
2. 

This implies that condition (11) holds. The proof is completed. 

Case (2):whenβk
YHM =

gk
T(gk−

‖gk‖

‖gk−1‖
gk−1)

‖gk−1‖
2 ,  the proof of this theorem can be seen in (Wei et al., 

2006). 
 
Global Convergence Properties 
The following assumptions are often used in the studies of the CG method. 
Assumption 1 

A. f(x) is bounded from below on the level set Ω = {x ∈ Rn , f(x) ≤ f(x0)} 
wherex0 is the starting point. 

      B. In some neighbourhoodNof Ω, the objective function is continuously differentiable and its 
gradient is Lipchitz continuous, that is, there exists constant L > 0 such that: 

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ N                                           (17) 
In 1992, Gilbert and Nocedal introduced property (*) which plays an important role in the studies 
of CG method. This property means that the following search direction automatically approaches 
the steepest direction when a small step-length is generated, and the step-length are not 
produced successively (Zhang et al., 2012). 
 
Property (*) 
Consider a CG method of the form (2) and (3). Suppose that for all k ≥ 1, 

0 < 𝛾 ≤ ‖gk‖ ≤ γ
−                                                                           (18) 

whereγ and γ− are two positive constants. The method has property (*) if there exist constants 

b > 1 andλ > 0 such that for all k: |βk| ≤ b, ‖sk‖ ≤ λ implies ‖βk‖ ≤
1

2b
 where sk = αkdk. 

The following lemma shows that the new parameter βk
YHMpossesses property (*). 



Malaysian Journal of Computing and Applied Mathematics 2018, Vol 1(1): 29-38 

©Universiti Sultan Zainal Abidin  

(Online) 

 

33 

 

 
Lemma1. Consider the method of form (2) and (3), and suppose that Assumption 1 holds, then 

the CG method withβk
YHM  has property (*). 

Proof: Case 1: If0 ≤ gk
Tgk−1 ≤ ‖gk‖

2, then  βk
YHM = 

gk
T(gk−gk−1)

‖gk−1‖
2 . 

Set b =
γ−2

γ2
> 1, λ =

γ2

2Lγ−2b
. 

By (8) and (18) |βk
YHM| =

|gk
T(gk−gk−1)|

‖gk−1‖
2 ≤

‖gk‖
2

‖gk−1‖
2 ≤

γ−2

γ2
= b. 

By Assumption 1,if‖sk‖ ≤ λ, then|βk
YHM| =

‖gk‖‖gk−1‖

‖gk−1‖
2 ≤

Lλγ−2

γ2
=

1

2b
. 

The proof is complete. 

Case 2: Whenβk
YHM =

gk
T(gk−

‖gk‖

‖gk−1‖
gk−1)

‖gk−1‖
2  ,the proof of this theorem can be seen in(Wei et al., 

2006). 
Lemma 2.Suppose that Assumption 1holds andxkis generated by Algorithm 2.1 

wheredksatisfies gk
Tdk < 0 for all k. The step sizeαk is obtained by (SWP) line search (4) and (5), 

then,  

∑
(gk
Tdk)

2

‖dk‖
2
< ∞                                                                                  (19)

∞

k=1

 

Proof.By Assumption 1 and the strong Wolfe line search, we obtain 

(1 − σ)gk
Tdk ≤ (gk+1 − gk)

Tdk ≤ Lαk‖dk‖
2 

Hence,  

αk ≥
−(1 − σ)gk

Tdk
L‖dk‖

2
                                                                              (20) 

We combine (20) with (12), which then results to 

∑
(gk
Tdk)

2

‖dk‖
2
<

L

1 − σ
∑(−αkgk

Tdk) <

∞

k=1

∞

∞

k=1

 

The proof is complete. 
Theorem 2.Consider any CG method of the form (2) and (3) that satisfies the following 
conditions: 
(1) βk ≥ 0 
(2) The search directions fulfil the sufficient descent condition. 
(3) The Zoutendijk condition holds. 
(4) Property(*) holds.  
If Assumptions1 and2 hold, then the iteration are globally convergent. From equations (11), (16), 
and (17) and Lemma 2, we found that the YHM method satisfies all four conditions in Theorem 2 
under the strong Wolfe line search, so the method is globally convergent. 
 
Numerical results and discussions 
 
In this section, we present the results of the numerical tests conducted on our new parameter. 
The test problems used are taken from Andrei (2008), as shown in Table 1.We measure the 
performance of the proposed method by comparing it with other, well-established CG methods; 
FR, PRP, WYL and DPRP. A laptop with Intel(R) Core™ i5-M520 (2.40GHz) CPU processor and 
4GB RAM in addition to MATLAB software version 8.3.0.532 (R2014a)are used to execute the 
optimization algorithms. We consider‖𝑔𝑘‖ ≤ 𝜀 as the stopping criteria as suggested by Hillstrom 

(1977) with 𝜖 = 10−6. The dimensions of the test problems lay in the range of 2 to 10000. For 
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each test function, we use four initial points, starting from a point close to the solution to another 
point far from it. In some cases, the computation is stopped due to the line search failing to find 
a positive step-size, thus it is considered a failure. The performance results are shown in Figures 
1 and 2, respectively, based on the performance profile introduced by Dolan and More (2002). 
 
 
 

Table 1: A list of problem functions 

No Function Dimension Initial points 

1 Six hump camel 2 -10, -8, 8, 10 

2 Booth 2 10, 25, 50, 100 

3 Treccani 2 5, 10, 20, 50 

4 Zettl 2 5, 10, 20, 30 

5 Ex –rosenbrock 2,4,10,100,500,1000,10000 13, 25, 30, 50 

6 Extended penalty 2,4,10,100 50, 60, 70, 80 

7 Generalized Tridiagonal 1 2,4,10,100 30, 35, 40, 45 

8 Shalow 2,4,10,100,500,1000,10000 10, 25, 50, 70 

9 Ex-Tridiagonal1 2,4,10,100,500,1000,10000 12, 17, 20, 30 

10 Extended White and Holst 2,4,10,100,500,1000,10000 3, 10, 30, 50 

11 Quadrtic qf2 2,4,10,100,500,1000 10, 30, 50, 100 

12 Extended Denschnb 2,4,10,100,500,1000,10000 8, 13, 30, 50 

13 Hager 2,4,10,100 1, 3, 5, 7 

14 Ex-Powell 4,8,20,100,500,1000 -1, 1, 7, 11 

15 Extended Beale 2,4,10,100,500,1000,10000 -19, 1, 13, 23 

16 Ex–Himmelblau 100,500,1000,10000 50, 70, 100, 125 

17 Diagonal 2 2,4,10,100,500,1000 -1, 1, 2, 3 

18 Perturbed quadratic 2,4,10,100,500,1000 1, 5, 10, 15 

19 Sum Squares function 2,4,10,100,500,1000 1, 10, 20, 30 

20 Ex- quadratic penalty QP2 4,10,100,500,1000,10000 17, 18, 19, 20 

21 Raydan1 function 2,4,10,100 1, 3, 5, 7 

22 Generalized Tridiagonal 2 2,4,10,100 1, 7, 8, 14 

23 Quadratic QF1 2,4,10,100,500,1000 1, 2, 3, 4 

24 Dixon and Price 2,4,10,100 100, 125, 150, 

175 

25 Fletcher 4,10,100,500,1000 7, 11, 13, 15 

26 Ex-Maratos 2,4,10,100 5, 10, 12, 15 

27 Leon function 2 2, 5, 8, 10 
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28 Extended wood 4 3, 5, 20, 30 

29 Quartic function 4 5, 10, 15, 20 

30 Matyas function 2 5, 10, 15, 20 

31 Colville function 4 2, 4, 7, 10 

 

 
Figure 1. Performance profile relative to the number of iteration. 
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Figure 2. Performance profile relative to the CPU Time 

From Figures 1 and 2, we found that our proposed algorithm solves 100% of the test problems, 
followed by WYL which solves 99.4% and DPRP with 88.4%of problems solved. Older CG 
methods like FR and PRP solve about 57% and 49 % of the test functions, respectively. 

 
Conclusion  
 
This paper gives anew𝛽𝑘formula for solving unconstrained optimization problems. Under strong 

Wolfe line search, this new𝛽𝑘 possesses global convergence properties. Numerical results show 
that the YHM method is very efficient and has the best performance when compared with other 
tested CG methods. 
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